DESCRIBE
Download Flojoy Studio to try this app
  
 The DESCRIBE node is based on a numpy or scipy function. The description of that function is as follows:
    Compute several descriptive statistics of the passed array.  Params:    select_return : This function has returns multiple objects ['nobs', 'mean', 'variance', 'skewness', 'kurtosis'].  Select the desired one to return.
See the respective function docs for descriptors.   a : array_like  Input data.   axis : int or None  Axis along which statistics are calculated. Default is 0.
If None, compute over the whole array 'a'.   ddof : int  Delta degrees of freedom (only for variance). Default is 1.   bias : bool  If False, then the skewness and kurtosis calculations are corrected for statistical bias.   nan_policy : {'propagate', 'raise', 'omit'}  Defines how to handle when input contains nan.
The following options are available (default is 'propagate'):
'propagate': returns nan
'raise': throws an error
'omit': performs the calculations ignoring nan values     Returns:    out : DataContainer  type 'ordered pair', 'scalar', or 'matrix'    
Python Code
from flojoy import OrderedPair, flojoy, Matrix, Scalar
import numpy as np
from typing import Literal
import scipy.stats
@flojoy
def DESCRIBE(
    default: OrderedPair | Matrix,
    axis: int = 0,
    ddof: int = 1,
    bias: bool = True,
    nan_policy: str = "propagate",
    select_return: Literal["nobs", "mean", "variance", "skewness", "kurtosis"] = "nobs",
) -> OrderedPair | Matrix | Scalar:
    """The DESCRIBE node is based on a numpy or scipy function.
    The description of that function is as follows:
        Compute several descriptive statistics of the passed array.
    Parameters
    ----------
    select_return : This function has returns multiple objects ['nobs', 'mean', 'variance', 'skewness', 'kurtosis'].
        Select the desired one to return.
        See the respective function docs for descriptors.
    a : array_like
        Input data.
    axis : int or None, optional
        Axis along which statistics are calculated. Default is 0.
        If None, compute over the whole array 'a'.
    ddof : int, optional
        Delta degrees of freedom (only for variance). Default is 1.
    bias : bool, optional
        If False, then the skewness and kurtosis calculations are corrected for statistical bias.
    nan_policy : {'propagate', 'raise', 'omit'}, optional
        Defines how to handle when input contains nan.
        The following options are available (default is 'propagate'):
        'propagate': returns nan
        'raise': throws an error
        'omit': performs the calculations ignoring nan values
    Returns
    -------
    DataContainer
        type 'ordered pair', 'scalar', or 'matrix'
    """
    result = scipy.stats.describe(
        a=default.y,
        axis=axis,
        ddof=ddof,
        bias=bias,
        nan_policy=nan_policy,
    )
    return_list = ["nobs", "mean", "variance", "skewness", "kurtosis"]
    if isinstance(result, tuple):
        res_dict = {}
        num = min(len(result), len(return_list))
        for i in range(num):
            res_dict[return_list[i]] = result[i]
        result = res_dict[select_return]
    else:
        result = result._asdict()
        result = result[select_return]
    if isinstance(result, np.ndarray):
        result = OrderedPair(x=default.x, y=result)
    else:
        assert isinstance(
            result, np.number | float | int
        ), f"Expected np.number, float or int for result, got {type(result)}"
        result = Scalar(c=float(result))
    return result